
UPIC: A Framework for Massively
Parallel PIC codes

Viktor K. Decyk

UCLA
Los Angeles, California, USA

Why do we need a software framework?

• Computer architecture is becoming more complex
• Physics models are becoming more ambitious
• Parallel programming requires special expertise
• Team efforts are becoming necessary.

It takes too long for a graduate student to become familiar
with and modify codes.

3D PIC is particularly challenging:
requires high performance and parallel computers

UPIC Framework
Framework: a unified environment containing all components
needed for writing code for a specific problem domain

Goal is rapid construction of new codes by reusing tested
modules: “Lego” pieces for developing new codes

Designed to support different programming styles
• Simple Fortran77 projects
• Complex, object-oriented, multi-author projects
• Student programmers, with many error checks

Supports multiple numerical methods, optimizations,
different physics models, different types of hardware

Above all, hides parallel processing

Multiple Electromagnetic Models
• Electrostatic (Coulomb force)
• Darwin (induced electric and magnetic forces)
• Electromagnetic (Maxwell’s equation)
• Relativity

Boundary conditions
• Periodic, Dirichlet, Neumann, Open (vacuum)

Multiple levels of accuracy
• Linear, Quadratic interpolation, Gridless
• Single, Double precision

Multiple programming paradigms
• Threads
• MPI

 Currently, based on Spectral Methods
• High accuracy
• Energy, Momentum conservation very good
• Useful for evaluating alternate algorithms => Fake Physics
• Useful when comparing with plasma theory

Finite-difference, non-uniform meshes to be added, evaluated

V. K. Decyk, "UPIC: A framework for massively parallel particle-in-cell codes," Computer
Phys. Comm. 177, 95 (2007)

Layered Approach
Lowest Layer: optimized Fortran 77 routines
• complex, unsafe, but very fast
• can be called by many languages

Middle Layer: Fortran 90 wrappers to lowest layer
• Simpler usage by hiding information, type checking
• Dynamic memory, pointers
• Familiar procedure style
• Can be written in other languages, C++, Fortran2003

Upper Layer: Object-Oriented Design Patterns
• Large blocks of code can be reused as black boxes
• Separation of concerns useful with multiple authors

Domain decomposition for distributed memory computers

Primary Decomposition load balances particles
• Sort particles according to spatial location
• Same number of particles in each non-uniform domain
• Scales to thousands of processors

Particle Manager responsible for moving particles
• Particles can move across multiple nodes

Uniform Secondary Decomposition to balance field solver

Partition Manager moves data between partitions
• Fields can move across multiple nodes

Parallelization of PIC Code

2D Domain decomposition

Each partition has equal number of particles

1D Domain decomposition

•

• •

••

•
•
•

••

•
•

• •

•

•

• •

•
•

•

•
•

•

•
•• ••

•

• •
••

•
•

• •

• •

•

•

• •
••

••

•
•

• ••

•

• ••
•
••

• •

• •

•

•

••• •
••

• ••
•• •

• •
• •
••

• •
•

• •

•

• •
• ••
• •

Dynamic load balancing: changing partitions

Field Data Distributions in Main iteration loop

PLIB: Parallel Particle Simulation Library
A small low-level library (30 subroutines) which encapsulate all
the communication patterns needed by parallel PIC codes

•designed for high-performance
•hides low-level communication details
•supports both message-passing and shared memory
•supports RISC and vector architecture
•supports linear and quadratic interpolation

Used in several “Grand-Challenge” Calculations

•Numerical Tokamak Turbulence Project
•Space Simulation
•Advanced Accelerators

Written in Fortran77: fast, can be called from many languages

Single node performance, 2.5 GHz Macintosh G5

2D Electrostatic, 45 nsec/particle
2-1/2D Electromagnetic, Relativistic, 215 nsec/particle
2-1/2D Darwin, 410 nsec/particle

3D Electrostatic, 85 nsec/particle
3D Electromagnetic, Relativistic, 270 nsec/particle

Scaling of Large PIC Electrostatic Benchmark

0.1

1

10

100 1000 104

1 Billion Particles
512x256x512 Mesh

Data
Linear scaling

Ti
m

e/
pa

rt
ic

le
/st

ep
 (

ns
ec

)

Number of Processors

3D PIC Performance on NERSC SP3/375

Future Architectures
Will multicore processors change our strategy?
Cache coherency?

In a plasma in “thermal
equilibrium”, transverse
electromagnetic energy grows
without bounds. Is this real?

0 2500 5000 7500 10000
0

1250

2500

3750

5000

Time

Field Energies vs Time

WELWET

WB

EM Code, Liinear, vth = 1.5, c = 10

0 2500 5000 7500 10000
-10000

-5000

0

5000

10000

Time

Relative Energies vs Time

EM Field Energy

Kinetic Energy

Total Energy

EM Code, Linear, vth = 1.5, c= 10 This energy growth comes
from particle kinetic energy
and nearly conserves energy.

Dispersion relation for light
waves looks OK.

But there is a lot of energy at
high frequencies!

0.00 0.75 1.50 2.25 3.00 3.75 4.50
0.0

12.5

25.0

37.5

50.0

k

Frequency of Radiative Electric Field vs k

EM Code, Quadratic, vth = 1.0, c = 10

Dots = Simulation Result

Solid Line = Theoretical Result

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

Frequency

Radiative Electric Field Spectrum vs Frequency

EM Code, Linear, vth = 1.5, c = 10

Varying precision shows this
is a grid effect. It is not real!

0 17 34 51 68 85
0.00

0.75

1.50

2.25

3.00

Time

Transverse Electric Field Energy vs Time

Linear

Quadratic

Gridless

Complex software requires more concepts than just objects

Design patterns are language independent abstractions to
organize classes to solve recurring software problems.

•Design patterns gives a way to reason about organizing
complex projects

In collaboration with Henry Gardner, ANU, we are investigating
useful patterns for scientific programming and translating them
to Fortran95.

Design Patterns

Main simulation program
in Fortran 95: facade pattern

program simulation2d
use plasma2d_class
integer :: done = 0
type (plasma2d) :: plasma

call new_plasma2d(plasma)
do while (done >= 0)
 done = update_plasma(plasma)
enddo
call del_plasma(plasma)

Main simulation program in C

int main(int argc, char *argv[])
{
 int itime = 0, done = 0;
 int plasma;

 NEW_2DPLASMA(&plasma);
 while (done==0) {
 UPDATE_2DPLASMA(&plasma,&itime,&done); }
 DEL_2DPLASMA(&plasma);
 return 0;
}

QuickPIC: Quasi-static code for plasma based accelerators.
QuickPic is Darwin in the transverse direction

QPIC: Quantum PIC codes using Feynman path integral
formulation

Parallel DRACO: 3D code for modeling ion propulsion. Major
area of interest is contamination of spacecraft and sensors.

BEPS: an interactive 2D/3D PIC code for teaching plasma
physics. Used by graduate student to model symmetric
neutralized ion beams for fusion applications

Codes using UPIC Framework

DRACO: Ion Propulsion, J. Wang, et. al.

2D BEPS Code:

Relativistic
Electromagnetic Two

Stream Instability

